Constrained multiparameter global bifurcation
نویسندگان
چکیده
منابع مشابه
BIFURCATION OF PERIODIC SOLUTION FROM AN EQUILIBRIUM POINT IN THE MULTIPARAMETER CASE
We consider the bifurcation of periodic solutions from an equilibrium point of the given equation: x =F(x,?) , where x ? R , ? is a vector of real parameters ? , ? , ... , ? and F:R x R ->R has at least second continuous derivations in variables
متن کاملSpectral asymptotics and bifurcation for nonlinear multiparameter elliptic eigenvalue problems
This paper is concerned with the nonlinear multiparameter elliptic eigenvalue problem u′′(r) + N − 1 r u′(r) + μu(r)− k ∑ i=1 λifi(u(r)) = 0, 0 < r < 1, u(r) > 0, 0 ≤ r < 1, u′(0) = 0, u(1) = 0, where N ≥ 1, k ∈ N and μ, λi ≥ 0 (1 ≤ i ≤ k) are parameters. The aim of this paper is to study the asymptotic properties of eigencurve μ(λ, α) = μ(λ1, λ2, · · · , λk, α) with emphasis on the phenomenon ...
متن کاملGlobal Bifurcation on Time Scales
We consider the structure of the solution set of a nonlinear SturmLiouville boundary value problem defined on a general time scale. Using global bifurcation theory we show that unbounded continua of non-trivial solutions bifurcate from the trivial solution at the eigenvalues of the linearization, and we show that certain nodal properties of the solutions are preserved along these continua. Thes...
متن کاملbifurcation of periodic solution from an equilibrium point in the multiparameter case
we consider the bifurcation of periodic solutions from an equilibrium point of the given equation: x =f(x,?) , where x ? r , ? is a vector of real parameters ? , ? , ... , ? and f:r x r ->r has at least second continuous derivations in variables
متن کاملOn the Structure of the Set of Bifurcation Points of Periodic Solutions for Multiparameter Hamiltonian Systems
This paper deals with periodic solutions of the Hamilton equation ẋ(t) = J∇xH(x(t), λ), where H ∈ C2,0(R2n × Rk,R) and λ ∈ Rk is a parameter. Theorems on global bifurcation of solutions with periods 2π j , j ∈ N, from a stationary point (x0, λ0) ∈ R2n × Rk are proved. ∇xH(x0, λ0) can be singular. However, it is assumed that the local topological degree of ∇xH(·, λ0) at x0 is nonzero. For system...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Functional Analysis
سال: 1984
ISSN: 0022-1236
DOI: 10.1016/0022-1236(84)90062-4